" AD=AO49 677

UNCLASSIFIED
| o |

AD4QE

END

DATE
FILMED

3 =-/8

DOC

NORTHWESTERN UNIV EVANSTON ILL TECHNOLOGICAL INST F/¢ 20/11
SOME CONSIDERATIONS OF ELASTIC ANALYSES OF DISCRETE MODELS OF Se=ETC(U)"
NOV 77 B A BOLEY NOOO14=7S=C=1042

TR=1977=3 - NL




EECUP.!TY CLASSIFICATION OF THIS PAGE (When Date Entered) / <
READ INSTRUCTIONS
N REPORT DOCUMENTATION PAGE ML g g a5
BER / 2. GOVT ACCESSION NO.J 3. RECIPIENT’S CATALOG NUMBER
TR 4 1977-3

4. TITLE (md Subtitle)

L @ 3 rvpz(gi REPORT & Pemoogfvsaso
AR 7 | 5
SOME CONSIDERATIONS OF, ELASTIC ANALYSES Technical Kepﬁt‘
OF DISCRETE MODELS OF SOLIDS . ks

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(s)

/0 Bruno A.lBoley Dean of Technological C_{i‘ N@PP14-75-C-1942 § 744~

9. PERFORMING ORGANIZATION NAME AND ADDRESS

ADA04967

j 10. PROG A M ELEMENT, ROJECT TASK
/ REA & WORK UNIT NUMBERS
Northwestern University

Evanston, Illinois 60201

NR-064-401
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT. DATHwmme——
OFFICE OF NAVAL RESEARCH // 4 Novammsin w17 | —
Arlington, VA 22217 13. NUMBER OF PAGES
10
N 14. MONITORING AGENCY NAME & Aooasssm

ontrolling Office) 15. SECURITY CLASS. (of thie report)
OFFICE OF NAVAL RESEARCH /
Chicago Branch Office /)) IQP _&

536 South Clark St.
Chicago, Illinois 60605

16. DISTRIBUTION STATEMENT (of this Report)

Unclassified
S g

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

_:-.—"———-"_
P

DISTRIBUTION STATEMENT A

Approved for public rcM
Distributien Unlimited

AD No.-
00 FiLE €O

17. DISTRIBUTION STATEMENT (of the abstract entered in Blozk 20, if different from Report)

>

D DO
U “«EW(’I ne

18. SUPPLEMENTARY NOTES UL i I'u i

AT

Elasticity, discrete elements, atomic models, surface tension

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

The possibility is examined of studying the behavior of elastic solids on
the basis of a model which considers them to be made up by a very large
number of elementary particles arranged in a regular lattice array.
of the simplifications which are needed (e.g., the neglect of surface
tension) to make the analysis practical are examined, first in general
terms and then for the simple case of a bar in tension, &—

Some

DD , on'ss 1473  E€OITION OF 1 NOV 68 15 OBSOLETE
$/N 0102-LF-014-6601

Yeo sR0 iz 3




(peasjug wieq ueyy)3OVd SIHL 40 NOILYDISISSYID ALINNDAS

s

At

(pesojug wieq ueyp) 3OVd SIHL 3O NOILVOIIAISSYID ALIMND3S




Bk il s

Technical Report 1977-3

——

SOME CONSIDERATIONS OF ELASTIC ANALYSES
OF DISCRETE MODELS OF SOLIDS*

Bruno A, Boley
Technological Institute
Northwestern University
Evanston, Illinois 60201

November 1977

Office of Naval Research
Task Order #NR-064-401
Contract #N00014-75-C-1042

A paper based on this report will appear in Computers and Structures

e

DISTRIBUTION STATEMENT A

Appeoved for public release
Distribatien Unlimited




’ T

Bait Socties 6
a

DISTRIBUTION /ATAILABILITY CODER

bt AVAIL and/wr SPEGIAL

SOME CONSIDERATIONS OF ELASTIC ANALYSES
OF DISCRETE MODELS OF SOLIDS* :

Bruno A, Boley
The Technological Institute
Northwestern University
Evanston, Illinois, USA

ABSTRACT

The possibility is examined of studying the behavior of elastic
solids on the basis of a model which considers them to be made
up by a very large number of elementary particles arranged in a
regular lattice array. Some of the simplifications which are
needed (e.g., the neglect of surface tension) to make the anal-
ysis practical are examined, first in general terms and then
for the simple case of a bar in tension.
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1. Introduction

The analysis of the stresses and deformations of solids is normally carried
out on the basis of a continuum model, whether classical or exhibiting some sort
of microstructure, which represents macroscopically the actual discrete struc-
ture of the material. Alternatively, a discrete model can be used, and there are
then two basic ways in which one might proceed. In the first, we start from the
continuum model, and replace it by a discrete one by means of suitable partition-
ing into appropriate units. This is the basis of very powerful methods of anal-
ysis, such as those employing finite elements or finite differences., The great
value of these approaches is well known and need not be discussed here.

A second approach consists in starting with the discontinuous structure and
attempting to perform calculations immediately on that basis. This has been

tried (e.g.,[1,2]); in these works the body is considered to be composed of a

relatively small number of material points, interactions between them being con-
sidered numerically. To represent more realistically the actual material, how-
ever, one would think that a very large number of material points should be used--
so large, in fact, that a continuum may in some sense be approached. It is un-
likely that a purely numerical approach is useful in this connection, because of
the enormous number of points being considered; it is however possible that
analytical techniques may be introduced to assist in the calulations. An exam-
ination of the latter possibility forms the subject of this paper. &

The present approach starts with the consideration of a large number of
material points, representing atoms and thus being assumed to be separated by
distances of atomic dimensions. Atomic forces are assumed to act between them
in accordance with the appropriate laws of attraction and repulsion, necessitating
the establishment of equilibrium equations at each point. These equations are
then simplified by neglecting the effect of surface tension [3], and by the use
of Saint Venant's principle; this allows a mathematical shift to a continuum

and thus solution of the problem,
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This approach therefore involves postponing as long as possible the tran-
sition from the lattice to the continuum model, This has the advantage that the
transition from one to the other can be examined from the standpoint of a purely
mathematical approximation, and thus, at least in principle, any errors incurred
can be easily ascertained. The problem chosen here is the simplest one possible,
namely that of a bar in tension, and one may have serious doubts whether the
present approach can be extended to any but the most elementary cases. It is
nevertheless hoped that the present analysis may be of some interest in illus-

trating the concepts involved and the difficulties that might be encountered.

2. Basic Considerations
Consider two particles, located respectively at Pi(xi’yi’zi) and

Pj(xj,yj,zj) and separated by a distance |fzj| =r Let the force between

ij°

them be ﬁ;j(rij)’ and act along ij, i.,e., so that its components are
X ,=X Y.~y zZ.-z
Nl e BaE &
ij ij ij
g where Ifzjl = Fij' During deformation, the particles undergo displacements 31
and :j respectively. The consequent change in the components (1) is easily

calculated, and gives the additional force between the particles, on the assump-

tion of infinitesimal deformations, as

3F F £ ,e W,-u,) F
E?.(_i.l-_i.i _1.1___.1__1__1-.1<?, _3) )
ij arij r1j rij rij j i

It will be next assumed, as is ﬁsual (4,5], that the force between particles

represents the difference between an attractive (positive) and a repulsive term, or

- i o ol o il
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corresponding to a potential

V-—:—--{T s n>m>o0 (3a)
rij rij

where A and B are constants. The term in parenthesis is eq.(2) is then

oF F

—ij __ij _n(+ 2)B m(m + 2)A (%)
or r n+t-2 m+2
ij ij rij rij

It is now easy, in principle, to see how one should proceed: the resultant
force on each particle, exerted by all other particles, is set equal to zero
if the particle is internal, and equal to the appropriate applied force if the
particle is on the surface (on the assumption that only surface forces are
applied). Practically, however, this would give rise to a prohibitive number
of equations and unknowns, and it is therefore necessary to simplify the problem.
To that end, two surface effects will be neglected. The first of these is the
one conventionally disregarded in continuum solutions on the basis of Saint
Venant's principle, which allows the details of distribution of the forces
applied over a small surface are to be overlooked, since they practically do not
affect the solution outside a thin surface layer.

The second neglected effect does not arise in classical elasticity,
although it arises in continuum theories exhibiting microstructure [3]). It
refers to the presence of surface tension, and is also confined to a thin layer
adjacent to the surface of the body. The thickness of this layer however, of the
order of the atomic dimensions, and therefore much smaller than that of the
Saint Venant layer, the latter being of the order of the linear dimensions of
the loaded area. Hence surface tension affects an extremely small portion of the
body and can safely be neglected if (as is presently desired) a solution anal-
ogous to the classical one is sought.

To clarify the above general remarks, the special example of a uniform bar

3=




in tension will be considered.

3. A Bar in Tension

Consider a uniform bar, extending in the x-direction, and pulled in that
direction by an end-force P, all other surfaces being free of applied loads.
Consider first the forces in the y-direction on a generic i-th particle;

equilibrium requires that

251?1” =0 for all 1 5)
where épijy is the y-component of 6?11' Assume for simplicity of discussion
that the particles occupy the vertices of a simple cubic lattice, and that
y=constant represents one of the free faces of the bar. Consider first the
portion of the summation which refers to the y-direction: as one proceeds

further and further from a face into the interior of the body, more and more

planes of particles appear in the summation. This gives rise to the surface
effect previously referred to, and which is limited to very few such planes; to
disregard it is equivalent to neglecting the presence of a physical surface,
except as a place where loads may be applied. In other words the body is math-
ematically considered to extend beyond its actual surface, sufficiently far
that the same type of equilibrium equations hold at all planes regardless of
their distance from the surface. The same argument holds for all surface of

the body, and eq.(5) for our problem can then be written as:

R R R
Z 2 2 8F 4, = © for all { (6)
xj- -R yj- -R zj- =R

where R is a distance chosen to be sufficiently large to include the entire bar
and what additional portion is needed to eliminate the surface effects; it will

be seen that, for ease of calculations, it may at times be taken as infinite.




For any value of i, the y-portion of the summation can now be separated into the
two regions yj s Yy and yj >y since no forces in this direction are any-
where applied, each of these regions must separately yield a zero resultant, or

(with symmetry in the other directioms):

S R i
42 z 2 Mg " 42 Z Z Wi ™ ° @

xj-o yj- -R zj-o xj=o yj=y1+1 zjao

The treatment of equilibrium in the z-direction is entirely analogous; so is

that for the x-direction except for the introduction of the applied force P, or

R
o i oorrond, o
j‘O

xj- -R yj-o z

(8)
R R R
N
42 Z PP ke
XX yy=o z =0

In this manner the local surface effects have been eliminated, but the presence
of applied surface loads has been accounted for.

Assume now,either by similarity to the classical solution or as an inde-
pendent semi-inverse assumption, and on the basis of Saint Venant's principle,

that the displacement components of a gemeric point P1 can be taken to be

u, = ax, 3 NLw byi oW . bzi 9

where a and b are constants., The components of 3? are then

ij

oF oF F 2 .
i [t + 0 - oFh - e By

1 (10)
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where

gij'xj'xi;ﬂij'}'j"yi; Cij’zj-zi (11)

The second ones of eqs. (7) and (8) then become, respectively,

bsl + (a - b)S2

(12)
as, + 2(b - a)s,
where
R R R 3F.
LY IMa-) ) vk 138)
€&=0 1th (=0 €=sh 1F0 (=0
-1 Y ) Gu-Ings
€=0 mh (=0 1] l'i.j

and where h = (y1+1 - yi> is the side of the basic cube in the lattice, The
other forms of 82, obtained by permutation of €,n and (, have not been shown in
eq. (13b) for the sake of brevity, and the subscripts ij have been dropped from
these quantities for simplicity of writing. It then appears that the first of
eqs.(7) and (8) are also satisfied; because use of (12) automatically insures
that the eqﬁilibrium equations are satisfied for all values of i.

Solution of (12) gives

P(S, - S,) PS
8 = e g B o i cate (14)
51(382 - Sl) 51(382 - Sl)

In particular, we may define Poisson's ratio as

b
NS ETR v K59

There now remains the evaluation of S1 and 82: this may be performed either

in a direct numerical fashion, or in an approximate analytical manner by

replacing the sum over discrete points by integrals over a continuum. The latter

s




approach will now be followed; it exemplifies the previously discussed trans-

ition to a continuum model at a late stage of the analysis.

4, Evaluation of Sums

The trapeziodal rule, usually employed to approximate integrals by means of £
sums, may be conversely used to approximate and present sums by means of integrals.

Then, provided R is large enough,

NN
i e 5 |
S, J'J' =, gmrdrdg ‘
h h X
(16)
R R R
3F F 2 ~
o 11 11V En
8q = I j I (ari. ri.) 2 dg dn 'dC
h h h J Aoy ]
where r: = rﬁ + gz. Then, with (3) and (4), we have
S E
bas 50 A<m+1\ 2 ST e
i m-2/ (m-2)/2 = ,\m=2 m-2
®%+h2) W2 R W2 h)
k
2 B(n + 1) 2 e | el
n- 2 (n-2)/2 n-2 n-2
®2+h2) W2 R) /2 h)
17)
By | —@rim®y )
™ m/2 - m-2
@202 (@-2) 2(m-2) (2 h) |
_p | (ar%+2m?) (a2
W e 2(n-2) (/2 B)"2

®R™+h")  (n-2)
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Evaluation of these quantities requires a knowledge of m,n,A,B, and h, as
well as a choice of R. We can however derive some general information, partic-
ularly about Poisson's ratio, without such detailed knowledge, but by inserting

eqs.(17) into (15), and then simplifying the resulting expression on the basis of

the inequalities

n-m n
Do B— 1 ; & (18)
BR

and recalling that m < n. Three cases must now be distinguished, namely:
(m>2,n>2), mMm<2, n>2), and (m < n < 2); then (18) permits the expres-

sions obtained for Poisson's ratio from eq.(15) to be reduced to:

n+ 2

\)!-3—(!;—+T) forn >2, anym<n (19a)
v = — for m < n< 2 (19b)
m+ 2

It is easy to see that, from eq. (19a), (1/3) < v < (1/2), while from eq. (19b)
we have o < v < (1/2). Thus, in agreement with experimental observation, Vv never
exceeds 1/2, but any positive value less than 1/2 is possible. Most metals, for
example, fall in the former category [5]. Analy;es such as the present one c#ﬁ'
be used to determine m or n from a knowledge o; Poisson's ratio, or, conversely,
to predict v on the basis of a postulated atomic behavior. The adaptation of the
concepts discussed here to more complicated problems will of course have to await

further work along these lines.
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